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This paper theoretically describes and experimentally verifies two mechanisms leading
to longitudinal dispersion of a passive tracer in a random array of circular cylinders.
We focus on moderate Reynolds numbers of order 10–1000, specifically the range
characterized by unsteady cylinder wakes. In this regime, two mechanisms contribute
to dispersion, each associated with a distinct region of the cylinder wakes: (i) the
unsteady recirculation zone close to each cylinder, and (ii) the velocity defect behind
each cylinder, which extends downstream of the cylinder over a distance of the order
of the cylinder spacing. The first mechanism, termed vortex-trapping dispersion, is
due to the entrainment of tracer into the unsteady recirculation zone, where it is
momentarily trapped and then released. A theoretical expression for this dispersive
mechanism is derived in terms of the residence time and size of the recirculation zone.
The second mechanism is due to advection through the random velocity field created
by the random distribution of the wake velocity defect. We derive an expression
for the defect behind an average cylinder, and show that it decays owing to array
drag over a length scale called the attenuation length, which is of the order of the
cylinder spacing. The superposition of the wake defect behind each cylinder creates
the random velocity field. Theoretical predictions for dispersion agree very well with
observations of tracer transport in a laboratory cylinder array, correctly capturing
the dependence on array density and Reynolds number. The laboratory studies also
document a transition in small-scale mixing at cylinder Reynolds number ≈ 200.
Below this limit, individual filaments of tracer remain distinct, producing significant
fluctuations in the local concentration field. At higher Reynolds number, cylinder
wakes contribute sufficient turbulence to erase the filament signature and smooth the
tracer distribution.

1. Introduction
Arrays of solid bodies fixed relative to an oncoming flow are found in a number

of physical situations including fixed bed reactors, porous media, aerosol filtration,
building clusters in urban environments, and plant canopies. In each case, it is often
important to predict the transport of a passive scalar species in the array. However,
owing to the spatial and often temporal complexity of the velocity field, application of
the scalar transport equation at the scale of individual array elements is prohibitive.
It is thus desirable to derive parameters describing transport on macroscopic scales,
i.e. scales greater than the detailed geometry of the array.

Here, we specifically consider the problem of longitudinal dispersion in moderate-
Reynolds-number flow through a randomly distributed array of circular cylinders.
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This model provides a good description of aquatic canopies found in freshwater
wetlands and saltwater marshes. Such canopies often consist of plants with cylindrical
stem morphology, such as Spartina alterniflora (smooth cordgrass) or Juncus roem-
erianus (needle rush). For these aquatic systems, the Reynolds number based on
stem diameter may range from Re = 10 to 1000, which includes the laminar flow
regime for which plant wakes are steady as well as the regime of unsteady wakes
with periodic vortex shedding. In this study, we restrict our attention to the unsteady
range, typically above Re ≈ 40. Moreover, we consider emergent canopies, with
stems piercing the water surface, by adopting as our model a two-dimensional
array of circular cylinders. We derive analytical descriptions for two mechanisms
of longitudinal dispersion associated with two distinct regions of each cylinder
wake: (i) the unsteady recirculation zone, and (ii) the velocity defect behind each
cylinder extending downstream over a distance of the order of the cylinder spacing.
A comparison to experimental observations confirms that these are the dominant
mechanisms of dispersion in the array. To our knowledge, this is the first description
of the longitudinal dispersion caused by unsteady flow in a moderate-Reynolds-
number array.

Previous studies of dispersion in random arrays have focused primarily on vanishing
Reynolds number for which the flow is steady and described well by Stokes theory.
For Stokes flow through a random array of spheres, Koch & Brady (1985) derived an
analytical expression for the mechanical dispersion which results from advection of
particles through the heterogeneous structure of the array. Here, ‘mechanical’ defines
a dispersive process that is independent of diffusion, i.e. advection sets the dispersive
time scale. Koch & Brady also deduced a non-mechanical component of dispersion
that arises from the trapping of scalar in the boundary layer near each particle surface,
which they termed ‘hold-up dispersion’, and which we will refer to as ‘boundary-layer
dispersion’. The magnitude of this component depends on molecular diffusion, which
controls the time scale for hold up.

Eames & Bush (1999) predicted dispersion around bodies of arbitrary shape based
on potential flow theory. By considering the distortion of a material surface around the
body, they derived a mechanical dispersion coefficient proportional to the added mass,
Cm, and a distortion length scale, L. This treatment predicts the dispersion induced
by streamline curvature around cylinders. However, as it relies on inviscid theory, it
does not address the significant effect of flow separation and vortex formation, which
results in trapping of scalar in the periodic primary wake. Nor does it account for
the suppression of velocity in the wake of the cylinder elements. Both of these effects
are considered in this study.

Transverse diffusion at moderate to high Reynolds number has been studied by
Nepf (1999) who derived an expression for transverse mechanical diffusion. In the
same study, Nepf used scaling arguments to predict the turbulence production within
a cylinder array, which in turn was used to predict turbulent diffusion. Together the
predicted mechanical and turbulent diffusion accounted for the observed array-scale
transverse diffusion measured in the range Re = 400� 2000.

However, no analysis has yet considered the effects of separation and unsteady
wakes on longitudinal dispersion in moderate-Reynolds-number arrays. It will be
shown here that both the unsteady recirculation zone and the velocity defect behind
each cylinder contribute to dispersion. First, dispersion due to the recirculation
region is derived in terms of the recirculation zone size and residence time. Then, an
expression for the velocity defect behind an average cylinder is obtained by averaging
the momentum equations, with a thin-wake approximation, and accounting for the
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effects of drag from the array. The defect is found to decay owing to drag over a scale
that we call the attenuation length. Far from the cylinder, the momentum equation is
approximately linear, and the superposition of all wake defects composes a random
velocity field that creates tracer dispersion.

In § 2, an array-scale description of dispersion is found from a spatial and temporal
average of the scalar conservation equation. In § 3, we derive a dispersion constant
describing the contribution of entrainment and subsequent release of scalar in the
recirculation zone. In § 4, we derive an expression for the velocity defect in the wake
of a single cylindrical element and use it to deduce the dispersive contribution of an
array of distributed elements. In § § 5 and 6, we report experimental observations of
longitudinal dispersion of tracer in a random array of cylinders. A comparison of the
experimental and theoretical results gives support to the theory and suggests that the
combined effects of the unsteady recirculation region and the velocity defect in each
wake make the dominant contribution to dispersion in the array.

2. Model description
The array we consider is two-dimensional, infinite in extent, and defined by the

two-dimensional coordinate system x = x i + y j . The array contains cylinders of
constant diameter d distributed randomly with constant number density n, i.e. the
probability density function for finding a cylinder centred at x is uniform. The solid
fraction of cylinders is α = πad/4, where

a = nd (1)

is the total frontal area (area exposed to the flow) per unit array volume. For
simplicity, we will use ad as a surrogate for the solid fraction. The area containing
one cylinder, denoted as the unit cell, is

A1 = 1/n = d/a, (2)

so that the mean centre-to-centre spacing between adjacent cylinders in any direction
is s =

√
d/a. The mean spacing along any straight transect, e.g. on a line parallel to

the direction of flow, is s� = 1/a. This is because the mean number of cylinders per
unit length along any such transect, with a finite width d , is nd = a. The spacing
parameters can be normalized as s∗ = s/d = 1/

√
ad and s∗

� = s�/d = 1/ad .
It is well-established that when the Reynolds number, Re =Ud/ν, where U is the

velocity upstream of the cylinder and ν the kinematic viscosity, is larger than Re ≈ 10,
there exists a wake structure behind each cylinder consisting of a small region of
flow reversal and recirculation directly behind the cylinder, and a much larger region
downstream of the cylinder in which the velocity is reduced relative to the upstream
velocity. The recirculation region, defined specifically as the region over which the
time-averaged velocity field exhibits recirculation, will be referred to as the primary
wake. The region of velocity defect will be referred to as the secondary wake. This
structure is illustrated in figure 1, which shows a unit cell containing a single cylinder
with its associated wake. The primary wake extends over a distance referred to as the
recirculation length, lr , which is O(d) as discussed in § 4. The secondary wake extends
a much larger distance known as the attenuation length, also discussed in § 4.

Within the array, the fluid velocity vector is u, and the x-axis is aligned with the
primary direction of fluid flow. The average fluid velocity, u, is defined by a transverse
average across the infinite array and averaged over a time scale sufficient to remove
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Figure 1. An arbitrary array section. The unit cell of area A1 is outlined by the dashed box.
The fixed cylinder is centred in the unit cell at (xc, yc) and has associated with it both a primary
wake (darker shading) of area Aw and a secondary wake (lighter shading). The primary wake,
of length lr , is the region in which the time-averaged velocity field exhibits recirculation
(shown). The secondary wake extends beyond x = lr , and decays over the attenuation length
scale of 1/CDa according to equation (35). The gap between adjacent cylinders, w, admits
compensating flow to balance the wake defect. Surrounding cylinders are numbered as in
equation (61).

time-dependence,

ui = lim
t→∞

lim
y→∞

1

t

1

2y

∫ t

0

dt

∫ y

−y

u dy ′. (3)

Although a time-average is performed in (3), we do not expect the spatially averaged
flow to exhibit time-dependence. This is because the time-dependence in the flow is
local to each element wake, and thus, in a random array, is distributed randomly with
no spatial correlation at scales beyond an individual wake. Even in a periodic array
of cylinders, where spatial correlations might be expected, Hill & Koch (2002) found
that for sufficiently large Reynolds number, the fluctuations in drag force are chaotic
and uncorrelated at distances beyond the length scale of a unit cell.
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Since u represents the average velocity over the entire array, including the solid
fraction, it is important to define also the average velocity within the fluid, or in the
‘pore space’, Uo = u/(1 − α). From the mean fluid velocity, we define the Reynolds
number, Re = Uod/ν, where ν is the kinematic fluid viscosity. The array-averaged
velocity only yields information about the mean advective mass flux within the array.
To obtain a more detailed description, and to predict dispersion, it is necessary to
account for the deviations from the array-averaged quantities that occur on the scale
of the individual cylinders. Here, we consider both temporal and spatial deviations
near each cylinder. We begin with the equations that describe the flow on the
cylinder-scale, namely the two-dimensional incompressible Navier–Stokes equations
with constant fluid density,

(∂t + u · ∇)u = − 1

ρ
∇p + ν∇2u,

(4)
∇ · u = 0.

A general average, whose conditions are as yet unspecified, can then be applied to
obtain

(∂t + 〈u〉 · ∇)〈u〉 = − 1

ρ
∇〈p〉 + ν∇2〈u〉 − ∇ · 〈u′u′〉, (5)

where the general averaging procedure is denoted by the angular brackets and
u′ = u − 〈u〉 are fluctuations from the average, the cross-correlations of which yield
a net stress term. First, consider the average in (5) to be a transverse cross-sectional
average, as in (3), i.e. the array-average. The average velocity is then constant and
equal to Uo, so that the inertial and viscous terms in (5) vanish. However, the
presence of the cylinders gives rise to a net resistance force per unit volume, given
by the number density of cylinders times the average drag force, Fo, exerted by the
fluid on each cylinder per unit length in the axial direction. The averaged momentum
equation is thus

0 = −∇po − a

d
Fo, (6)

where the resistance, Fo, is the average drag force per cylinder due to both surface
shear stress and form drag. Specifically, Fo arises by evaluating the second and third
terms on the right-hand side of (5) around each cylinder, as in Howells (1974) and
Hinch (1977).

To describe the deviations from the array-averaged quantities near each cylinder,
we take the average in (5) to be a conditional average, conditioned on the presence
of a cylinder at a fixed coordinate x1. This conditional average is denoted by 〈 〉1 so
that the averaged momentum equation is

(∂t + 〈u〉1 · ∇)〈u〉1 = − 1

ρ
∇〈p〉1 + ν∇2〈u〉1 − a

d

〈F〉1

ρ
, (7)

where 〈u〉1 is the velocity field around an average cylinder, i.e. the velocity disturbance
created by each cylinder, and (a/d)〈F〉1 is the average resistance, exerted by the whole
array, opposing the velocity disturbance. The velocity disturbance, 〈u〉1, describes the
flow both in the primary and secondary wake regions behind an average cylinder.
Because the velocity is reduced in the wake relative to the array average, i.e. 〈u〉1 < Uo,
the conditionally averaged drag, 〈F〉1, is weaker than the array-averaged drag, Fo.
However, the velocity disturbance decays away from the cylinder, so that far from the
cylinder the effect of the fixed cylinder is no longer felt and the conditional average is
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simply the array average, 〈u〉1 = Uo and 〈F〉1 = Fo. The attenuation of the cylinder
disturbance is discussed in greater detail in § 4.1, and (7) is used to derive a component
of longitudinal dispersion due to spatial heterogeneity in the flow.

2.1. Cylinder interactions at high packing density

The disturbance created by each cylinder depends on the cylinder density and
configuration. Interactions between neighbouring cylinders become strong for large
ad . Much of the analysis of dispersion presented in this paper assumes the existence
of a unique and independent wake behind each cylinder (see figure 1). However,
when the array is densely packed, neighbouring wakes can affect one another or even
coalesce. For example, side-by-side cylinders with a centre-to-centre spacing, T , less
than 1.2d will act as a single body with a single wake (Zhang & Zhou 2001). For
1.2 < T/d < 5, the two wakes are distinct, but strongly interact. Only for T/d > 5
are the two wakes independent. Similarly, two in-line cylinders with a centre-to-centre
spacing L/d < 1.8 form a single wake. Distinct in-line wakes do not occur unless
L/d > 4. The above limits for lateral (T ) and longitudinal (L) spacing suggest that, in
a square array, independent wakes only exist for packing densities up to ad = 0.05.
This limit is consistent with the density at which element drag reduction due to
wake interference begins for a square array (Nepf 1999). For a random array, the
which average spacing between in-line cylinders, which is 1/ad , is larger than in a
square array, for which the in-line spacing is 1/

√
ad . Thus, wake interference should

be delayed to slightly larger packing densities. An approximate upper limit for the
present theory for random arrays would be O(0.1). While most coastal and bank
vegetation is within this limit of stem area density, some freshwater wetlands have
densities as high as ad = 0.4. In § 4.3, we discuss a means of extending the model
presented here to these high-density regimes.

2.2. Scalar transport within the array

The evolution of scalar concentration over time and space is given by the mass
conservation equation

∂tC = −∇ · (uC − Dm∇C), (8)

where C(x, t) is the scalar concentration and Dm is the molecular diffusion constant.
We define a Péclet number based on the molecular diffusivity and the array-averaged
velocity, Pe = Uod/Dm, which indicates the relative importance of convection and
diffusion. To describe the array-scale transport, (8) is first decomposed into temporal
and spatial fluctuations at the cylinder scale and then averaged over the array scale.
The local concentration and velocity are

C(x, t) = Co + c′(x) + c′′(x, t), (9)

u(x, t) = Uo + u′(x) + u′′(x, t), (10)

where the array averages, denoted with the ‘o’ subscript, are defined as in (3);
single-primed quantities are temporally averaged spatial fluctuations, and double-
primed quantities are temporal fluctuations. Introducing these decompositions into
the transport equation (8) and taking the array average, denoted by angular brackets,
yields

∂tCo = −∇ · (UoCo − Dm∇Co + 〈u′c′〉 + 〈u′′c′′〉). (11)

The first and second terms on the right-hand side are the fluxes due, respectively, to
mean advection and molecular diffusion. The third and fourth terms are correlations
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between the fluctuating velocity and concentration fields. The temporal correlation,
〈u′′c′′〉, includes the flux due to turbulent transport, denoted J t , and an additional
contribution from the velocity fluctuations associated with vortex shedding in the
primary wake of each cylinder. Specifically, as vortices form, they trap parcels of
tracer and hold them back relative to the mean. The random distribution of traps
yields a dispersive flux, Jv . The spatial correlation, 〈u′c′〉, represents a dispersive flux
due to the time-averaged spatially random velocity field, which we denote

J s = 〈u′c′〉. (12)

We will show that J s is due to the spatial heterogeneity caused by the superposition of
secondary wake defects and can thus be derived by considering the average secondary
wake disturbance for a cylinder.

To close the array-scale description we must represent the fluxes J t , Jv and J s

as functions of the mean velocity and concentration fields (Uo and Co). If the mean
concentration field is a slowly varying function of position, i.e. relative to the scale of
the fluctuations, the net mass flux will be a linear function of the mean concentration
gradient, and the dispersive fluxes obey Fick’s law,

J = −D∇Co, (13)

where the constant of proportionality is the effective dispersion constant. The array-
scale transport equation then becomes

∂tCo + Uo∂xCo = (Dm + Dt + Dv + Ds)∂
2
xCo. (14)

The molecular diffusion constant, Dm, is a material property and may be assumed
known, whereas turbulent diffusion has already been analysed by Nepf (1999), who
found that Dt increases as (ad)1/3. The contributions of vortex trapping and the
spatially heterogeneous velocity field, Dv and Ds respectively, will be analysed in the
following sections.

We postulate that (14) holds, subject to a posteriori confirmation. The necessary
condition for Fickian dispersion, and the existence of an effective dispersion constant,
is that the fluctuations in the concentration and velocity fields decay sufficiently fast
in time and space. It is shown in § 3 that trapping in the vortex zone leads to Fickian
dispersion if the average time a tracer parcel is trapped within the recirculation zone
is finite, i.e. the probability distribution function (p.d.f.) of trapping times decays
sufficiently fast for long times. That this condition is met can be anticipated from
the results of Koch & Brady (1985), who showed that when tracer is trapped in
the boundary layer around a sphere in Stokes flow, molecular diffusion provides an
eventual escape mechanism, thus ensuring a finite trapping time and Fickian dispersion
within a sphere array. In light of this result, we can at least expect diffusion to provide
a mechanism for tracer escape from the recirculation zone. However, in § 3, we will
show that escape is controlled by convection, rather than diffusion, leading to a
comparatively much shorter trapping time.

The flux due to spatial velocity heterogeneity, J s , is Fickian provided the velocity
disturbance associated with each cylinder, 〈u〉1 from (7), decays sufficiently fast away
from each cylinder. Such decay is expected based on Brinkman’s analysis of viscous
porous media, in which resistance from the medium, or Brinkman screening, ensures
the decay of the velocity disturbance over a distance known as the Brinkman screening
length (Koch & Brady 1985). Although Brinkman’s equations do not hold at moderate
Reynolds numbers where inertia is important, we show in § 4 that, for a moderate-
Reynolds-number array, the velocity disturbance associated with each cylinder decays



50 B. L. White and H. M. Nepf

over a similar scale, which we call the attenuation length, thus ensuring Fickian
dispersion.

Given the velocity disturbance, 〈u〉1, an explicit expression for the dispersion due
to the spatial flux, 〈u′c′〉 can be obtained, and is given in the Appendix. However,
this expression is unwieldy, and involves complete knowledge of the unsteady velocity
field around a cylinder. In § 4, we approach the problem by a slightly different line of
reasoning to obtain an approximate expression for the dispersion constant.

3. Dispersion from vortex trapping
The primary wake of an isolated cylinder consists of a recirculation zone with steady

closed streamlines for Reynolds numbers above Re ≈ 1 but less than Re ≈ 40, at
which point a periodic instability sets in. At the point of instability, the recirculation
zone begins to oscillate sinusoidally in time, thus opening the closed streamlines
and allowing a pathway for fluid transport into and out of the recirculation zone
(Gerrard 1978). The rate of entrainment of free-stream fluid into the primary wake
and the length of time the entrained fluid remains there is dependent on the Reynolds
number. At Reynolds numbers just above the onset of the periodic oscillation, vortex
shedding is not observed, and a fluid parcel remains in the primary wake for many
oscillation cycles (Gerrard 1978). At a Reynolds number in the range 55 < Re < 70,
vortex shedding begins, and scalar is released from the primary wake with the
shedding vortices. For Reynolds numbers in this range but below Re ≈ 100, the
vorticity-bearing fluid drawn into the wake cavity resides there long enough for its
circulation to be cancelled by diffusion of opposite-signed vorticity from the opposite
side of the wake. However, above Re ≈ 100, convection of vorticity dominates diff-
usion, and the entrained fluid is very quickly removed from the wake cavity, usually
on the next shedding cycle (Gerrard 1978). The residence time for tracer particles
captured in the primary wake of a flat plate was measured by MacLennan & Vincent
(1982) for Reynolds numbers above Re = 1000 based on plate width. The residence
time, τ , followed an exponential distribution, ψ(τ ) � exp(−τ/τ ), where τ is the mean
residence time. They observed a strong dependence of τ on Re, in accordance with the
Reynolds-number-dependence of the vortex-shedding frequency. They also observed
that τ was independent of turbulence intensity, suggesting that vortex formation, and
not turbulent mixing, is the sole mechanism for trapping and release.

To calculate the dispersion constant due to vortex trapping, consider an ensemble
of tracer particles advecting through the array with the mean fluid velocity, Uo.
Each time a particle is entrained into a primary wake, it is trapped and held back
from the ensemble for a time τ taken from the probability density function, ψ(τ ). It
thus experiences an excursion of −Uoτ relative to the mean ensemble position. The
random distribution of traps as well as the distribution of trapping times leads to
a net dispersion of tracer, which is Fickian after each particle in the ensemble has
sampled several traps.

The dispersion constant can be calculated from the Lagrangian velocity auto-
correlation function, u′(t)u′(t + τ ), where u′(t) = u(t)−Uo, and the overbar represents
an average over the ensemble of tracer particles. This function is simple to calculate,
since particles in the free stream advect with the mean ensemble, such that u′ = 0, while
particles residing in traps are stationary, i.e. u′ = −Uo. Introducing the conditional
probabilities that at time t a particle is inside a trap, pw(t), or is in the free stream,
pf (t), the autocorrelation function can be written as the weighted sum of two
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conditional averages,

u′(t)u′(t + τ ) = 〈u′(t)u′(t + τ )〉wpw(t) + 〈u′(t)u′(t + τ )〉f pf (t), (15)

where 〈u′(t)u′(t +τ )〉w and 〈u′(t)u′(t +τ )〉f are the correlation functions averaged over
the subensembles of, respectively, particles within a trap at time t , and particles in the
free stream at time t . It is easy to see that 〈u′(t)u′(t + τ )〉f = 0 for all τ since u′(t) = 0
for free-stream particles. Moreover, because the random distribution of cylinders in
the array is spatially uniform, the probability of a tracer parcel residing in a trap
is a stationary function with respect to the moving particle ensemble. This implies
that pw(t) is constant in space and time, and is simply equal to the total proportion
of fluid volume occupied by primary wakes, ε. The autocorrelation function for the
ensemble is thus

u′(t)u′(t + τ ) = ε〈u′(t)u′(t + τ )〉w = εU 2
o k(τ ), (16)

where k(τ ) is the probability that a tracer particle in a trap at time t remains there at
t + τ . This function is common in statistics, and is known as the survival function,

k(τ ) = 1 −
∫ τ

0

ψ(τ ′) dτ ′. (17)

The dispersion constant for the trapping process is given by the rate of growth of the
ensemble variance (Csanady 1973)

Dv = lim
t→∞

1

2

dσ 2

dt
=

∫ ∞

0

u′(t)u′(t + τ ) dτ =

∫ ∞

0

εU 2
o k(τ ) dτ = εU 2

o τ (18)

where τ =
∫ ∞

0
k(τ ) dτ = −

∫ ∞
0

τ (dk/dτ ) dτ is the mean trap duration, i.e. the first
moment of the trapping time p.d.f., ψ(τ ).

From (18), the existence of Dv requires only that the mean residence time within
a primary wake, τ , be finite so that the integral in (18) converges. That is, the
distribution for trapping times, ψ(τ ), must decay sufficiently fast as τ → ∞. The
exponential distribution found by MacLennan & Vincent (1982) certainly satisfies
this requirement, but if, for instance, ψ(τ ) � τ−µ where µ � 2, then the integral
would diverge, and Dv would not exist. Such a scenario would result in anomalous
(non-Fickian) dispersion (see, e.g. Young 1988; Weeks & Swinney 1998).

As discussed earlier, in the presence of vortex shedding, convection dominates
diffusion, so the residence time τ is expected to be inversely proportional to the
frequency of oscillation, fs = StUo/d , where St is the Strouhal number. Specifically,
convection dominates if the time scale for oscillation is much shorter than the time
scale for diffusion across the wake, or StPe � 1. This is expected for moderate
Reynolds numbers and most solutes of interest since Pe = ReSc, where Sc is the
Schmidt number of the solute which is typically O(103) or higher for most solutes,
though it is O(10) for heat.

Confident that convection controls escape from the primary wake at moderate
Reynolds number, we can express the mean residence time as τ = β/fs , where the
constant of proportionality β is a function of Re. Furthermore, since each cylinder in
the array has associated with it a primary wake, the total primary wake volume must
be proportional to the cylinder density, so we write ε = κad . The constant κ is a func-
tion of Re since the recirculation length changes considerably with Re (Gerrard
1978). Note that when the cylinder packing density is high enough for multiple wake
interactions to occur between adjacent cylinders (ad ≈ 0.1), κ will show a dependence
on the cylinder density and packing configuration as well.
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Substituting the above expressions for τ and ε into (18) an expression for the
dispersion constant is obtained:

Dv =
βκ

St
adUod. (19)

Finally, it must be noted that (19) describes the Fickian limit of vortex trapping,
and thus is only valid after the central limit theorem applies, or after each particle has
been trapped many times. To determine the time scale necessary to reach the Fickian
regime, consider the time scale for a single particle to be trapped exactly once, �.
This time scale is obtained from the volumetric flux of fluid into all primary wake
volume, Vw . This flux is given by Qw = Vw/τ , as required by continuity. If the total
fluid volume in the array is Vf , then the time scale for all fluid parcels to be trapped
exactly once is the turnover time for the entire fluid volume,

� = Vf /Qw =
τ

ε
. (20)

Note that the inverse of this time scale may be viewed as the trapping frequency.
Thus, the Fickian limit is reached asymptotically in the time scale t � �, or

t � β

κStad

d

Uo

. (21)

The time required increases as the array becomes sparser (decreasing ad). Prior to the
Fickian limit, the tracer distribution will exhibit a long upstream tail, corresponding
to the fraction of tracer that has been trapped the longest and/or most frequently.

At this point, the issue of re-entrainment of tracer into a single wake should be
addressed. It is conceivable that a parcel of tracer may be trapped more than once
within the same wake. Results from Duan & Wiggins (1997) for cylinder wakes at
Reynolds numbers of 100 and 190 show that re-entrainment is a rare event. In any
case, re-entrainment events do not effect the expression for dispersion, since such
events are already reflected in the trapping time distribution, ψ(τ ), and in the average
tracer flux, Qw .

3.1. Boundary-layer dispersion

The vortex-trapping dispersion described in this section is similar to the boundary-
layer dispersion associated with trapping in the viscous boundary layer around
array elements identified by Koch & Brady (1985). Both scale in proportion to
the number density of trapping sites, which in both cases is proportional to the
solid fraction. The primary difference, however, is that tracer escapes the primary
wake by convection, whereas diffusion is necessary for boundary-layer escape. As a
result, from (19), the vortex-trapping dispersion constant, when normalized by the
molecular diffusivity, scales as Dv/Dm � Pe, whereas boundary-layer dispersion has
Pe log Pe scaling (Koch & Brady 1985). Because diffusion controls boundary-layer
escape, boundary-layer dispersion operates on a much longer time scale than vortex-
trapping dispersion. Here, we give simple scaling arguments to compare the magnitude
of boundary-layer dispersion to vortex-trapping dispersion in the moderate-to-high
Reynolds-number regime.

Around each cylinder, of diameter d , is a boundary layer, of width δ, that is defined
as the region in which, moving closer to the cylinder surface, diffusion first becomes
comparable to convection,

δ2/Dm � d/uδ, (22)
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where uδ is the local velocity tangential to the cylinder surface at the outer edge of the
boundary layer. We will assume that the boundary layer is close enough to the cylinder
surface that the shear stress, τ , throughout the boundary layer can be approximated
as constant and equal to its value at the cylinder surface, i.e. the tangential velocity
component is approximated as linear in the direction normal to the cylinder surface.
This linear approximation of the velocity profile implies that the surface shear stress
is related to the boundary-layer velocity by τw = µuδ/δ, where τw(θ), uδ(θ) and δ(θ)
all vary with the angular coordinate measured from the front stagnation point of the
cylinder. It is common to express the surface stress by a friction coefficient,

cf =

∫ π

0

τw sin θ dθ
1
2
ρU 2

o

(23)

which has been found for a laminar boundary layer on a circular cylinder (100 < Re <

3(10)5) to be cf = 5.93/
√

Re. From (23), the wall shear stress scales as τw/ρ � cf U 2
o ,

and it follows that the local velocity scale is thus

uδ = τwδ/µ � ρcf U 2
o δ/µ. (24)

Substituting the velocity scale into (22) yields a scale for the boundary-layer thickness,

δ/d �

[
1

cf RePe

]1/3

. (25)

The time scale for tracer to escape this boundary layer by molecular diffusion is then

Td �
δ2

Dm

� Pe1/3

(
1

cf Re

)2/3
d

Uo

. (26)

Given the scale for the boundary-layer thickness, it is possible to evaluate the accuracy
of the linear approximation of the tangential velocity profile within the boundary layer.
From the Blasius series solution to the steady two-dimensional boundary-layer equa-
tions for a laminar cylinder wake, the linear approximation is reasonable for distances
from the cylinder surface of order y/d � 0.1/

√
Re (Schlichting 1987, figure 10.8).

From (25), using the relation Pe = ReSc and the experimental value of cf given
above, the boundary-layer thickness can be rewritten δ/d � (1/

√
Re)[1/5.93Sc]1/3. For

typical solutes, Sc = O(103) (though for heat Sc = O(10)), yielding values for the
boundary-layer thickness in the range δ/d � (10−2 − 10−1)/

√
Re, which is within the

range of linearity, i.e. is within the constant stress layer. Thus, the linear approximation
is valid for most solutes.

In theory, the contribution from boundary-layer dispersion could be obtained
by solving the convection–diffusion equation within the boundary layer, where
both convection and diffusion are significant. Such an approach was taken by
Koch & Brady (1985) for spheres in Stokes flow to obtain the Pe log Pe scaling
for boundary-layer dispersion. However, the velocity disturbance around moderate-
Reynolds-number cylinders does not have a simple analytical expression, as it is
characterized by an inertial boundary-layer structure and wake separation, thus
precluding a simple solution of the convection–diffusion equation. Alternatively, the
boundary-layer dispersion constant could be obtained by the arguments used to
obtain the expression for vortex-trapping dispersion. We would need to know the
tracer survival distribution within the boundary layers, k(τ ) from (16). A similar
method was followed by Young & Jones (1991) for boundary layers around spheres
in Stokes flow using a local expansion of the Stokes stream function. They determined
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that the survival distribution for particles trapped in the boundary layer of a sphere
had a 1/t time dependence, thus leading to the Pe log Pe scaling for boundary-layer
dispersion, and replicating the results of Koch & Brady (1985). However, lack of
an analytical expression for the velocity disturbance within the boundary layer of
a moderate-Reynolds-number cylinder makes it difficult to obtain an expression for
k(τ ). Thus, to obtain an approximation for the boundary-layer dispersion constant,
we use (18) with the mean residence time approximated by the diffusive time scale,
τ � Td , and the boundary-layer volume ratio εbl ∝ adδ/d to obtain

Dbl �
ad

cf Re
Uod. (27)

This estimate constitutes an upper bound on the dispersion constant because it
overestimates the mean residence time within the boundary layer as the diffusive
time scale, neglecting the portion of tracer that escapes slowly by convection prior
to the diffusive limit. However, (27) is intuitively reasonable, given that when the
experimental-value for cf is used, the normalized dispersion constant scales as

Dbl/Dm � adPe/
√

Re, exhibiting the same 1/
√

Re dependence as the momentum
boundary-layer thickness for a circular cylinder at moderate Reynolds numbers
(Schlichting 1987). As Re increases, Dbl decreases as convection is increasingly more
efficient at sweeping tracer away from the boundary layers, diminishing both the
residence time within the boundary layers and their thickness. The Pe/

√
Re scaling

that we obtain differs from the Pe log Pe scaling in Stokes flows. In fact, our result for
inertial flows is independent of molecular diffusion. This is because the residence time
within the boundary layer grows as Pe1/3, but the boundary-layer thickness decreases
as Pe−1/3, so the effects cancel exactly.

With (27), we can compare the contribution from boundary-layer dispersion to
that of vortex trapping. Both are proportional to ad and thus grow with the cylinder
packing density. From both (19) and (27), the ratio of their magnitudes is

Dbl

Dv

�
St

βκcf Re
. (28)

Since β and κ are O(1) constants, and St is typically O(0.1), and using cf = 5.93/
√

Re,
it follows that Dbl � Dv over the range of Reynolds numbers for which the cylinder
wakes are unsteady. Note also that the time scales at which each process becomes
important are very different. The time scale for boundary-layer dispersion to become
Fickian is of order

Td/εbl �
Pe2/3

(cf Re)1/3

d

Uoad
. (29)

This is longer than the time scale for vortex trapping to become a Fickian process
(21) by the factor (β/κSt)(Pe2/3/(cf Re))1/3 . In § 5, we discuss typical values for these
parameters and show that for most solutes, including that used in our experiments,
and for the moderate Reynolds number range we study, the time scale necessary for
boundary-layer dispersion to become important is 103 times greater than that for
vortex trapping. We thus conclude that boundary-layer dispersion plays little role in
our study.
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4. Secondary wake dispersion
Next, we consider the velocity defect within the secondary wake and show that

the superposition of all secondary wakes within the array creates a randomly
heterogeneous velocity field, which contributes to dispersion of a passive solute.
We first derive a simplified expression for the velocity in the secondary wake, starting
from equation (7) for the conditionally averaged velocity field around a cylinder. It
is then shown that continuity requires a compensating velocity in the gaps between
cylinders to balance the velocity defect in the secondary wakes. The total variance of
the random spatial velocity field is determined by superposition of the secondary wake
and gap compensation components from all cylinders in the array. The dispersion
constant due to the secondary wake is then calculated by considering Lagrangian
trajectories through the resulting random velocity field.

4.1. Statistics of the spatially random field

To describe the perturbations associated with each wake and gap, we begin with
equation (7), the averaged momentum equation conditioned on the presence of a
fixed cylinder at x1 . We are interested in the velocity disturbance from the fixed
cylinder over length scales much greater than the immediate O(d) region around it.
The turbulent fluctuations in the secondary wake of an isolated cylinder (moderate
to high Reynolds number) have a length scale of O(d) or smaller (Schlichting 1987;
Rehab, Antonia & Djenidi 2000). The turbulence scale is thus considerably smaller
than the scale over which the secondary wake extends, and so it is reasonable to
Reynolds-average (7) and define an effective eddy viscosity, νt , to yield

ũ · ∇ũ = − 1

ρ
∇p̃ + (νt + ν)∇2ũ − a

d

F̃
ρ

, (30)

with the tilde representing the Reynolds-averaged quantities with respect to the fixed
cylinder. It is also useful to define an effective (turbulent) Reynolds number based on
the sum of the eddy and molecular viscosities, Ret = Uod/(νt +ν). Moreover, the drag
term in (30) can be rewritten in terms of a mean drag coefficient, CD , that depends

on Reynolds number and the cylinder density, such that F̃ = 1
2
CDd|ũ|ũ. It should be

noted that the average value of CD in the array may vary considerably from that for
an isolated cylinder (see e.g. Koch & Ladd 1997; Ayaz & Pedley 1999; Nepf 1999).

It is important to have an estimate for the eddy viscosity, νt . The magnitude of Ret

has been obtained for a number of experimental scenarios. Hinze (1975) gives Ret ≈ 65
for an isolated cylinder, whereas Schlichting (1987) gives a value of approximately 45.
Fitting wake velocity defect profiles given in Kovasznay (1949) and Zavistoski (1994),
we have estimated a value of Ret ≈ 35 in the range from Re = 56 to Re = 770.
These values suggest that over the Reynolds number range of interest to us, Re ≈ 50
to Re ≈ 1000, the value of the eddy viscosity is in the range νt ≈ [1/(35 − 65)]Uod ,
so that the relative importance of fluid viscosity and turbulent viscosity ranges from
ν/νt = O(1) to ν/νt = O(0.1). This estimate for νt is necessary in order to predict
secondary-wake dispersion, which is derived in the following.

To calculate the secondary-wake defect, we are interested in the velocity disturbance,
u′

w , only in a region far from the primary wake, where u′
w/Uo � 1. The conditionally

averaged velocity from (30) is decomposed into the array average and the small
perturbations, namely, ũ = (Uo +u′

w)i + v′
w j . In addition, for inertial flows, we expect

the velocity disturbance to have a thin wake structure, such that the transverse extent,
b, is small compared with the longitudinal scale, L, i.e. b/L � 1. The relevant variables
are thus rescaled by introducing non-dimensional variables denoted with an asterisk,
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namely x = Lx∗, y = by∗, u′
w = qu∗, v′

w = (qb/L)v∗ and p̃ = Pp∗, where P is
the pressure scale to be determined and q is the velocity scale for the longitudinal
perturbation u′

w , so that q � Uo. Upon substitution into (30), and after neglecting
O((q/Uo)(b/L)2) inertial and drag terms and the O((1/Ret )(d/L)(b/L)2) longitudinal
viscous term, we obtain for the longitudinal momentum equation(

b

L

)2

u∗
x∗ =

−P

ρqUo

(
b

L

)2

p∗
x∗ +

1

Ret

d

L
u∗

y∗y∗ − 1
2
aLCD

(
b

L

)2 (
Uo

q
+ 2u∗

)
. (31)

Since the inertial term on the left-hand side must be significant, and thus comparable
to the pressure term, the pressure scale must be P/ρqUo = O(1). Additionally, because
we are interested in length scales far from the cylinder, say L ∼ s = d/

√
ad , by

balancing the viscous and inertial terms we deduce (b/L)2 = O(
√

ad/Ret ), which with
the values for Ret cited above, affirms the hypothesis that (b/L)2 � 1.

After neglecting terms of O((q/Uo)(b/L)2) and smaller, the transverse momentum
equation becomes(

b

L

)2

v∗
x∗ =

−P

ρqUo

p∗
y∗ +

1

Ret

d

L
v∗

y∗y∗ − 1
2
aLCD

(
b

L

)2

. (32)

Because P/ρqUo = O(1), and the inertial, viscous and drag terms are O(b2/L2) � 1
or smaller, we must deduce that the transverse pressure gradient, p∗

y∗ , is negligible, such
that the pressure disturbance in the wake is approximately equal to the background
pressure outside the wake, p̃ ≈ po, just as in thin boundary-layer theory. This implies
that the pressure disturbance caused by the cylinder is localized, and that away from
the cylinder the pressure field is simply the mean field obtained by the zeroth-order
momentum balance (6). By this argument, we would expect to find a Green’s function
for the velocity disturbance arising from the point drag force at the cylinder. Indeed,
after approximating the pressure by the mean and returning to dimensional variables,
(31) becomes

∂xu
′
w =

νt + ν

Uo

∂yyu
′
w − CDau′

w, (33)

which is in the form of a diffusion equation with a decay term due to array drag. The
comparison between (33) and the well-known Brinkman equation for Stokes flow in
porous media should be noted. As discussed in Howells (1974), the Brinkman equation
can be obtained from (7) by neglecting inertial terms. From the Brinkman equation, a
Green’s function for the velocity disturbance is obtained, which is the Stokes solution
around an isolated cylinder modified by the net drag force from the array. The
analysis here is similar in spirit, but the importance of inertia and the subsequent
wake approximation which allows pressure to be treated as the array average, results
in a different, diffusion-type Green’s function for the velocity disturbance.

The velocity disturbance is a delta function at the cylinder origin, (xc, yc) = (0, 0),

with strength determined by the average drag per cylinder, F̃. The disturbance satisfies
the boundary conditions

u′
w = 0, y = ±∞, (34)

which, with the drag condition, leads to

u′
w(x∗, y∗) = −CDUo

√
Ret

4
√

πx∗
exp (−Ret y

∗2/4x∗) exp(−CDadx∗), (35)
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where the position coordinates have been non-dimensionalized, x∗ = x/d and y∗ =
y/d . From (35), it is apparent that the velocity perturbation decays exponentially
by array drag over the scale (CDa)−1, which we will call the attenuation length.

The attenuation length, much like the Brinkman screening length in a Brinkman
porous medium (Howells 1974), gives the distance from a given cylinder at which the
disturbance due to that cylinder is no longer felt by the fluid.

For distances much less than the attenuation length, but still outside the primary
wake, lr � x � (CDa)−1, the disturbance given by (35) has the appearance of a
typical solution to the one-dimensional diffusion equation, with x playing the role
of time. Such diffusive scaling for inertial wake flows is commonly assumed in the
far wake, with ample experimental support (see Schlichting 1987, for example). Data
from Paranthoen et al. (1999) for an isolated cylinder suggest that for a wide range
of Reynolds numbers, diffusive scaling also holds closer to the cylinder if the origin
of the momentum sink is offset to the end of the recirculation zone (see figure 1).
With this offset, diffusive scaling is evident in the wake velocity profiles of Paranthoen
et al. for distances greater than O(d) downstream of the recirculation zone, as shown
by figure 2. We denote the distance between the end of the recirculation zone and the
point at which diffusive scaling holds as xo = O(d).

In scaling the momentum equation, we replaced the conditionally averaged pressure
field by the array-averaged pressure field. We now consider the small error associated
with this approximation. While the pressure disturbance due to a fixed cylinder is
localized near the cylinder, a small portion is distributed through the gap between
laterally adjacent cylinders. This slightly elevated pressure is necessary to drive flow
through the gap to compensate for the lost mass flux in the cylinder wake. The gap
width is O(1/ad), so the velocity compensation is distributed over a much larger
width than the point drag force that is responsible for the wake defect. Because
of this scale separation, it is advantageous to separate the Green’s function for the
secondary wake velocity defect from the much more distributed background velocity
compensation in the gaps. By integration of (35), the total mass flux deficit associated
with each cylinder is

M = 1
2
ρCDUod. (36)

Mass conservation requires an equivalent compensating flow distributed between
elements,

u′
g =

M

ρw
=

CDUoad

2(1 − ad)
, (37)

where w = s� − d is the average gap spacing between laterally adjacent cylinders (see
figure 1). Applying the Bernoulli equation across the gap, valid in the inviscid limit
(Ret s/d � 1), the perturbation pressure drop is

p′ = 1
2
ρu′2

g = 1
8
ρ

[
CDUoad

(1 − ad)

]2

, (38)

distributed over a streamwise length scale O(s = d/
√

ad). Comparing the perturbation
to the mean gradient, which balances the mean array drag by (6), i.e. ∂xpo =
−ρCDaU 2

o /2, gives

dxp
′

dxpo

� 1
4
CD

ad3/2

(1 − ad)2
. (39)

For small ad , dxp
′ � dxpo, as assumed to obtain (33).
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Figure 2. Centreline velocity defect, (Uo − u)/Uo, for several wake profiles in the range
45 < Re < 80 taken from figure 18 in Paranthoen et al. (1999). Their data, which line up
remarkably well along a single line in figure 18, were fitted to a fourth-order polynomial to
generate the points shown here (solid markers). In Paranthoen et al., the velocity defect is
plotted as a function of the renormalized streamwise coordinate, (x − lr )/xmax , where lr is the
length of the recirculation zone, and xmax is an Re-dependent constant, xmax = O(d). Here, we
plot the defect as a function of [(x − lr )/xmax]

−1/2. The linear fit (solid line) suggests that, for an
isolated cylinder, the velocity defect decays like u′

w � 1/
√

(x − lr ) in the range x � 0.35xmax+lr ,
i.e. the growth of the wake is diffusive, consistent with the theory (35) for x � 1/CDa. Note
that increasing distance from the cylinder corresponds to decreasing [(x − lr )/xmax]

−1/2. This
Reynolds number range spans significant changes in near-wake behaviour (Gerrard 1978),
yet diffusive scaling holds throughout this range, suggesting that this scaling is robust, and
probably extends to higher Reynolds numbers.

To find the evolution of the velocity perturbation, u′
g , we treat the compensating

flux as a transverse line source of momentum. Following the same procedure used to
derive u′

w , the velocity field is written as the sum of the mean and the gap perturbation
and substituted into (30). We linearize, as before, and neglect transverse diffusion of
momentum in the gap in order to obtain an upper bound on u′

g . Then

∂x∗u
′

g = −CDadu
′

g, (40)
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i.e. owing u′
g decays to array drag only. With the initial condition

u′
g|x∗=0 =

UoCDad

2(1 − ad)
,

u′
g(x) =

UoCDad

2(1 − ad)
exp(−CDadx∗), |y − yg| � 1

2
w, (41)

u′
g(x) = 0, |y − yg| > 1

2
w, (42)

where yg is the mid-width coordinate of the gap associated with each cylinder and
the cylinder centre is taken to be x = 0 (see figure 1). Note that w is a random
function, i.e. the gap associated with each cylinder varies randomly with the locations
of adjacent cylinders. However, this higher-order effect will be neglected since it will
be shown that for the array densities that we address, the gap contribution to the
velocity variance is small compared with the wake contribution, thus w is taken to
be a constant mean gap width.

To derive the statistics of the random velocity field, we will write the spatial
deviation from the mean velocity, u′(x, y) = ũ(x, y)−Uo, as a superposition of velocity
perturbations due to upstream wake defect and gap contributions. Superposition is
valid for points outside the primary wake of a fixed cylinder, because here, where
the velocity defect is small compared with the mean flow, the momentum equations
governing the evolution of the wake and gap velocity perturbations, (33) and (40),
are linear. Thus, cylinders and gaps can be viewed as, respectively, point sinks and
sources of momentum, whose associated velocity perturbations evolve according to
linear diffusion equations. Moreover, the superposition of two or more simple shear
layers to describe a complex shear layer was previously described by Bradshaw, Dean
& McEligot (1973), and validated experimentally by Zhou et al. (2000) for complex
wakes formed from two or more cylinders. In an area A extending far upstream and
in either transverse direction of a point (x, y) there are N = Aa/d cylinders which
contribute to the total velocity fluctuation at (x, y). Thus, the total fluctuation is given
by superposition:

u′(x, y) =

N∑
i=1

u′
w,i(x

∗
i , y

∗
i ) +

N∑
i=1

u′
g,i(x

∗
i , y

∗
g,i), (43)

where u′
w,i and u′

g,i represent, respectively, the wake and gap contributions. (x∗
i , y

∗
i )

is the normalized distance to the ith cylinder and (x∗
i , y

∗
g,i) is the normalized distance

to the centre of the gap associated with the ith cylinder.
From the disturbance fields, u′

w and u′
g , the spatial statistics of the random

velocity field, ũ(x, y), can be constructed from the superposition given by (43). Since
upstream cylinders contributing to u′(x, y) are randomly distributed, (43) is a sum
of independent identically distributed random variables, which is the mathematical
formulation of a random walk, where u′

w,i(x
∗
i , y

∗
i ) and u′

g,i(x
∗
i , y

∗
g,i) play the role of

the single step displacements in the walk, and u′(x, y) is the net displacement after n

random steps.
We define Pu′(u′) as the probability density function (p.d.f.) for u′(x, y), and pu′

w
(u′

w)
and pu′

g
(u′

g) as the p.d.f. for u′
w,i(x, y) and u′

g,i(x, y), respectively. We seek the mean

and variance of Pu′(u′), 〈u′〉 and σ 2
u , from which the coefficient of dispersion can

be obtained. Following random walk formalism (see Hughes 1995, for example), the
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moments of Pu′(u′) are given in terms of the moments of pu′
w
(u′

w) and pu′
g
(u′

g):

〈u′〉 = N [〈u′
w,i〉 + 〈u′

g,i〉], (44a)

σ 2
u ≡ 〈u′2〉 − 〈u′〉2 = N

[〈
u′2

w,i

〉
− 〈u′

w,i〉2 +
〈
u′2

g,i

〉
− 〈u′

g,i〉2
]
, (44b)

where, in general, 〈gn〉 ≡
∫ ∞

−∞ gnp(g) dg is the nth moment of the density p(g) and g

represents either u′
w,i or u′

g,i . This integral can be rewritten more simply as

〈gn〉 = lim
A→∞

∫ ∫
A

gn(x, y)Pc(x, y) dA, (45)

where Pc(x, y) = a/Nd is the two-dimensional p.d.f. for the location of the ith
cylinder. This is easily verified by setting n ≡ 0, so that the zeroth moment of both
pu′

w
and pu′

g
is

∫∫
A

a/Nd dx dy = 1, proving that Pc(x, y) is properly normalized. We
can choose the area A arbitrarily large to include all contributing upstream cylinders,
yielding from (45)

〈
u′n

w,i

〉
=

∫ ∞

−∞

∫ ∞

xo

u′n
w (x, y)Pc(x, y) dy dx, (46)

〈
u′n

g,i

〉
=

∫ ∞

−∞

∫ ∞

0

u′n
g (x, y)Pc(x, y) dy dx, (47)

where the expressions for the wake and gap perturbations, respectively (35) and
(41), are used. Also, note that the O(d) distance, xo, has been used in the limits of
integration to eliminate contributions from primary-wake regions, in which diffusive
scaling of the wake perturbation is invalid, and whose contribution to dispersion has
already been characterized by vortex-trapping dispersion. Evaluating (45) yields the
means if n = 1,

〈u′
g,i〉 = −〈u′

w,i〉 = 1
2
Uo, (48)

which satisfies mass conservation in the array since 〈u(x, y)〉 ≡ Uo = Uo+〈u′
w,i〉+〈u′

g,i〉.
Setting n = 2 yields, respectively, the variances due to wake and gap contributions,

σ 2
w =

U 2
o

16
√

π
�

(
1
2
, 2x∗

oCDad
) √

C3
DadRet − 1

N
〈u′〉2, (49a)

σ 2
g =

U 2
o CDad

8(1 − ad)
− 1

N
〈u′

g〉2, (49b)

where �(1/2, 2x∗
oCDad) is the incomplete gamma function,

�
(

1
2
, 2x∗

oCDad
)

=

∫ ∞

2x∗
oCDad

(1/
√

τ ) e−τ dτ.

Since x∗
o = xo/d ≈ 1, 2x∗

oCDad � 1 for sparse arrays, and thus the Taylor expansion
of �(1/2, 2x∗

oCDad) can be used to define the function

γ ≡ 1√
π

�
(

1
2
, 2x∗

oCDad
)

= 1 − 2√
π

√
2x∗

oCDad +
2

3
√

π
(2x∗

oCDad)3/2 + O
(
ad5/2

)
. (50)

Making use of this notation, and recognizing that the second terms in both (49a)
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and (49b) vanish as A → ∞ and thus N → ∞, we finally obtain

σ 2
w =

〈
u′2

w,i

〉
− 〈u′

w,i〉2 =
U 2

o

16
γ

√
C3

DadRet , (51a)

σ 2
g =

〈
u′2

g,i

〉
− 〈u′

g,i〉2 =
U 2

o CDad

8(1 − ad)
. (51b)

The total variance of the spatially random velocity field is the sum of the wake and
gap variances, σ 2

u = σ 2
w + σ 2

g . However, note that σ 2
u′

g
/σ 2

u′
w
�

√
ad/RetCD , so that for

sparse arrays (ad � 0.1) and Ret � O(10), the gap contribution is small σ 2
u′

g
/σ 2

u′
w

� 1.

In this case, the wake defects contribute most of the variance, and we can make the
approximation

σ ∗2
u = σ 2

u

/
U 2

o ≈ σ 2
w

/
U 2

o , (52)

in which the variances have been normalized using the mean velocity. Specifically, in
a sparse array, the wake provides a more concentrated velocity perturbation, a point
momentum sink, than the gap compensation which is distributed over an O(1/ad)
width. For dense arrays, however, the variance contributed by the gap compensation
becomes significant, as fluid is forced through the gaps with a significant pressure
drop. It is then no longer acceptable to neglect the gap pressure perturbation, as was
done on the basis of (39) to obtain (33). Thus for high packing density, the theory
leading to (51a) is no longer valid, as noted already in § 2.1.

4.2. Secondary wake dispersion constant

We now use the variance of the velocity field to calculate the dispersion due to
secondary wakes. Specifically, the dispersion coefficient, Ds , will be determined by
estimating the Lagrangian velocity correlations of passive particles advecting through
the unit cell, which is shown as a dashed square in figure 1. We assume that tracer
particles are distributed throughout the array with uniform concentration C, so the
constant flux of tracer particles into the unit cell is

dN/dt = CUs. (53)

We will follow a discrete packet of particles entering in a discrete time dt = dx/U ,
and thus numbering

N = Cs dx. (54)

The velocity autocorrelation function averaged over all trajectories is

R(τ ) ≡ u′
i(0)u′

i(τ ) = lim
N→∞

1

N

N∑
i=1

u′
i(0)u′

i(τ ), (55)

where u′
i(τ ) is the instantaneous velocity of the ith particle at time τ along its trajectory

and the overbar represents the average over all trajectories. Using the expression for
N , (54), and integrating the velocity correlation function over the range of initial
transverse particle locations ζ within the unit cell gives

R(τ ) =
1

Cs dx

∫ s∗/2

−s∗/2

u′(0)u′(τ )C dx dζ =
√

ad

∫ s∗/2

−s∗/2

u′(0)u′(τ ) dζ. (56)

Given R(τ ), Ds follows directly

Ds =

∫ ∞

0

R(τ ) dτ. (57)
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We can approximate R(τ ) using the spatial velocity statistics defined previously.
Specifically, R(τ ) is estimated by following an ensemble of particles advecting through
the time-averaged velocity field and assuming they execute random motion in the
transverse direction due to turbulence and/or Brownian motion, with an effective
transverse diffusion constant Dy . We also define an effective Schmidt number based on
the particle diffusion constant and the effective turbulent viscosity, Sct = (ν + νt )/Dy .

If the time scale for transverse diffusion across the unit cell, i.e. across width s, is
much longer than the time scale for advection over the attenuation length, 1/CDa,
then the net dispersion caused by the velocity disturbance for each wake will be
mechanical, i.e. determined by advection, that is if

(s2/Dy)

1/UoCDa
= CDRetSct � 1. (58)

For the moderate-Reynolds-number flows we examine, this relation is expected to
hold because in turbulent flows, Sct ≈ 1, for mass (true also for the turbulent Prandtl
number for heat), CD =O(1), and Ret � 1, as discussed in § 4.1. In the laminar regime,
for which transverse diffusion is Brownian, Dy = Dm, Sct � 1 for typical solutes. Thus,
from (58), dispersion should be mechanical for moderate Reynolds number, so the
Lagrangian particle velocity in each wake, u′(τ ) can be estimated by advection and
diffusion of the ensemble through the wake defect (35). Equations (56) and (57) thus
yield

Ds =
√

ad

∫ ∞

0

dx∗

u(x∗ + x∗
o , y

∗)

∫ s∗/2

−s∗/2

dξu′
w(x∗

o )

×
∫ s∗/2

−s∗/2

dy∗p(x∗ + x∗
o , y

∗|x∗
o , ξ )u′

w(x∗ + x∗
o , y

∗), (59)

where p(x∗ + x∗
o , y

∗|x∗
o , ξ ) is the Gaussian propagator for the transverse diffusive

motion

p(x∗ + x∗
o , y

∗|x∗
o , ξ ) =

√
RetSct

4πx∗ exp

[
−RetSct

4x∗ (y∗ − ξ )2
]
. (60)

Since within the secondary wake, u′
w � Uo, the time integration in (59) is converted

to spatial integration using the identity

dt =
dx

u(x(t))
=

dx

Uo

+ O(u′
w/Uo),

similar to Taylor’s frozen turbulence theorem. In evaluating (59), we will consider
only the leading-order term, dx/Uo.

Before evaluating (59), it is important to determine the contribution from cylinders
outside the unit cell to the autocorrelation function for the cylinder wake within the
unit cell. The integral in (59) contains the spatial correlation, 〈u′

w(xo)u
′
w(x)〉, within

the unit cell. By superposition, as in (43), u′
w(x) is composed of contributions from

the cylinder within the unit cell, which we denote u′
1(x), and from those outside,

u′
i(x), i = 2, . . . , n, so that

〈u′
w(xo)u

′
w(x)〉 = 〈(u′

1(xo) + u′
2(xo) + . . . u′

n(xo))(u
′
1(x) + u′

2(x) + . . . u′
n(x))〉. (61)

Refer to figure 1 for an example configuration of contributing cylinders outside
the unit cell. All cross-terms in (61) involving the primary wake, 〈u′

1(xo)u
′
i(x)〉 and

〈u′
i(xo)u

′
1(x)〉 for i �= 1, are zero since u′

1(x) is deterministic within the unit cell and
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can be taken outside the average, leaving 〈u′
i(x)〉 = 0. Autocorrelation terms like

〈u′
i(xo)u

′
i(x)〉 are estimated simply by the velocity defect for a single cylinder (35).

This leaves higher-order cross-terms: 〈u′
i(xo)u

′
j (x)〉, i �= j, i, j > 1, which represent

the wake interactions, and which cannot be accounted for without extending the
present framework to a higher-order analysis. We can estimate the error incurred by
neglecting these terms. The maximum interaction is obtained for in-line cylinders, and
at the distance O(s) from the fixed cylinder, at which

〈u′
i(xo)u

′
j (x)〉

〈u′
1(xo)u

′
1(x)〉 ≈ ad1/4

√
3

exp(−3CD

√
ad). (62)

For CD = 1, (62) has a maximum of about 0.15 at ad ≈ 0.03. In a random array,
interactions will be less since cylinders are staggered. With this justification to
neglect the cross-terms, Ds is determined by summing the total contribution of
all autocorrelation terms 〈u′

i(xo)u
′
i(x)〉 to dispersion in the unit cell. This is equivalent

to integrating 〈u′
1(xo)u

′
1(x)〉 over all space. Thus, extending the limits of integration in

(59) to ±∞ and using the disturbance of only the fixed cylinder (35) yields

Ds = Uod

√
C3

DRetSct/(Sct + 1)

8
√

π
exp[−2x∗

oCDad/(Sct + 1)]�
(

1
2
, 2x∗

oCDad
)
. (63)

This expression can be written in terms of the variance of the Eulerian velocity field
using (51a):

Ds = 2σ ∗2
w s∗

√
Sct

Sct + 1
Uod + O(

√
ad). (64)

where σ ∗2
w = σ 2

w/U 2
o . Higher-order correction terms are smaller than the error

associated with the assumptions made to obtain (63), and are not computed. Note
that, in light of (52), σ ∗2

w can be accurately replaced by the total variance, σ ∗2
u , in (64).

The above analysis can be carried out for the compensating flows by substituting
u′

g , (41), into (59) rather than u′
w . Doing so, we find that the gap contribution to

dispersion is

Dg = Uod
CDad

4(1 − ad)
= 2σ ∗2

g Uod (65)

where σ ∗2
g = σ 2

g /U 2
o . From (64) and (65), Dg is O(ad) compared with Ds . This is

reasonable given that σ 2
g � σ 2

w for small ad. However, since Dg is proportional to ad ,
it increases as density increases, while Ds remains approximately constant. It is thus
relevant to compare Dg with the contribution from vortex trapping, Dv , which also
increases in proportion to ad . In § 6, it is demonstrated that Dg � Dv in nearly all
cases of interest.

From (64), Ds is proportional to σ ∗2
w (the intensity of spatial velocity fluctua-

tions) and also to the correlation length scale, s∗ = 1/
√

ad , arising from the
(1/

√
x) exp(−CDax) wake attenuation. The exponential decay of the defect, (35),

ensures that the correlation length scale is finite, and thus, Ds exists, i.e. Fickian
dispersion. The scaling for Ds in (64) is similar to that obtained by Dagan (1987) for
dispersion in porous media, for which mechanical dispersion is given by K = UIσ 2

Y ,
where I is the correlation length scale and σ 2

Y is the variance of the log-normally
distributed hydraulic conductivity field. Moreover, when non-dimensionalized by the
molecular diffusivity, both the wake and gap contributions to dispersion scale with
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the Péclet number,

Ds/Dm ≈ 2σ ∗2
w s∗

√
Sct

Sct + 1
Pe, (66)

Dg/Dm =
CDad

4(1 − ad)
Pe, (67)

like the Pe scaling found by Koch & Brady (1985) for mechanical dispersion in
Stokes flow through a sphere array.

From (64), Ds has only a weak inverse dependence on Schmidt number, which
supports our hypothesis that the details of particle transport within the wake are
secondary to the macroscopic wake structure. Specifically, consider two extreme
scenarios: (i) Sct → ∞: particles remain on the time-averaged streamlines without
deviation, yielding perfectly correlated trajectories through the wake; (ii) Sct = 1:
rapid diffusive mixing in the wake makes particle trajectories highly uncorrelated
within the wake. From (64), the difference between these two scenarios amounts to a
factor of only

√
2 in Ds . It is reasonable to expect that the real particle trajectories

fall between these two scenarios; particles will move transversely through the wake,
but in coherent motions dictated by the shedding vortices. The relative independence
from the details of correlated motion within a wake justifies our approximation of
the Lagrangian correlation by advection through the Eulerian velocity disturbance.
Thus, we conclude that (64) accurately reflects the leading-order scaling and provides
a good approximation of secondary-wake dispersion.

Furthermore, observe from (64) that Ds is only weakly dependent on ad . From
(52), σ ∗2

w �
√

ad , but the length scale s∗ = 1/
√

ad , such that the two factors cancel.
The dependence on ad comes only from �, which is weakly ad-dependent. This
is an important result, since it qualitatively separates secondary-wake dispersion
from vortex-trapping dispersion, which, to leading order and for small ad , increases
in proportion to ad according to (19). So, we anticipate that as ad → 0, Ds will
be dominant, but as ad increases, vortex-trapping dispersion may grow sufficiently
to become the dominant mechanism of dispersion. These trends are born out in
experiments discussed in § 5.

Koch & Brady (1985) find a similar separation between mechanical and boundary-
layer dispersion in arrays of spherical elements. Boundary-layer dispersion grows
in proportion to the array density, whereas mechanical dispersion is independent
of density owing to the effect of array drag in opposing the velocity disturbance
associated with each element, known as Brinkman screening (Koch, Hill & Sangani
1998). This similarity suggests a generalization for dispersion through distributed
objects. Trapping dispersion mechanisms associated with the velocity field local to
individual objects grow in proportion to the density of individual objects, whereas
dispersion associated with the velocity field downstream of individual elements is
more weakly dependent on the density.

Finally, secondary-wake dispersion approaches a Fickian diffusion process
asymptotically in accordance with the central limit theorem. The Fickian regime
is reached after each particle has sampled several different wakes, which will occur
when the tracer has been transported for a time t � s/Uo, or

t � d

Uo

√
ad

. (68)
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4.3. Effects of high packing density on dispersion

As discussed in § 2.1, for packing densities of approximately 0.1 and higher, significant
wake interactions may result and impact the dispersion processes. At high packing
density, the array will not behave as a collection of independent elements, but rather
as clusters of elements with coalesced wakes acting as large trapping zones, and with
streams threading between them. In general, the clustered trapping regions, consisting
of the elements and the fluid space between them, will have a proportionally larger
stagnant and recirculation zone than the same number of independent elements. As
the size of the trapping zones increases, the residence times within these zones will
likewise increase. Both trends will tend to enhance trapping dispersion. The theoretical
framework presented here for vortex trapping will apply, but the residence time, τ , and
the relative volume of traps, ε, must be appropriately increased, with a dependence
that must be determined empirically. At this high density, trapping dispersion will
probably make the dominant contribution to longitudinal dispersion, overshadowing
secondary-wake dispersion.

5. Experimental results
Tracer dispersion was measured in a random array of circular cylinders with

diameter 0.64 cm. The cylinder configuration was generated randomly in MATLAB,
the location of each cylinder chosen from a uniform p.d.f., with the stipulation that no
portion of any two cylinders could overlap. The cylinders were held in Plexiglas base
plates placed along the bed of a glass-walled recirculating flume, with water depth
h = 15 cm and width B = 38 cm. The cylinders extended through the free surface.
Three array densities were considered: ad = 0.013, ad = 0.025 and ad = 0.082, which
are all within the range of validity for the theories presented.

The flow was controlled by a Weinman 3G-181 recirculating pump and a diaphragm
valve to achieve Reynolds numbers, Re = Uod/ν, ranging between 65 and 650. To
create smooth inlet conditions, energy was dissipated with two mats of rubberized
coconut fibre and flow curvature was removed by a 0.45 m honeycomb flow straight-
ener. The cylinder array began 3 m from the inlet.

For each density, the spatially and temporally varying velocity field was charac-
terized using a SonTek MicroADV acoustic Doppler velocimeter sampling at 50 Hz.
Transverse profiles were made at several streamwise locations and depth profiles
were made at several horizontal locations. These measurements are summarized in
figure 3. The horizontal velocity field (figure 3a) exhibits strong variability owing
to the random distribution of cylinders. A boundary layer near each wall, which is
very small compared with the channel width, is the only exception to the spatial
randomness. The depth variation at a single horizontal coordinate (figure 3b) exhibits
much less variability, and is approximately uniform except for a boundary layer near
the bed which is small compared with the total depth. As the boundary layers are
confined to very thin regions, and depth variation is small, the treatment of the
velocity field as a random function of only the horizontal coordinate is justified.

Histograms showing the scatter in the spatial velocity measurements are given in
figure 4 and the dependence of the spatial velocity variance on Reynolds number and
cylinder density are shown in figure 5. As predicted by the theory, (51a) and (52),
the variance of u(x, y) increases with ad , and the data, though not extensive, suggest
the leading-order scaling σ 2

u′ �
√

ad is appropriate, as shown by figure 5. In addition,
the variance is greater for low Re, which, given the well-established behaviour for an
isolated cylinder of decreasing drag coefficient with increasing Reynolds-number, is
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Figure 3. Spatial variability in the velocity field. (a) Transverse profiles of streamwise
velocity for Re = 660 and ad = 0.013, measured at 3 different streamwise locations, spaced
approximately 115d apart, and denoted by circles, squares and diamonds. The locations of the
profiles were chosen at random from within the array, while maintaining the given spacing
between any two profiles. (b) Depth profiles at various horizontal coordinates for Re ≈ 600 and
ad = 0.013 (squares, dotted line), and ad = 0.082 (circles, solid line). Velocity is normalized
by the depth average, 〈u〉z. The uncertainty in all velocity measurements is within the size
of the marker. Note that variability is much more pronounced with respect to the horizontal
coordinate than the vertical. Thin boundary layers are observed near the bed (below about
0.03h) in the vertical profiles, and near the walls (inside about 0.03B) in the lateral profiles.
These observations support a model of the velocity field as a random function of horizontal
coordinate, u(x, y).

consistent with the σ 2
u ∝ C

3/2
D relationship predicted by (51a). The Reynolds-number

dependence of σ 2
u′ is shown in figure 6.

The velocity variance measured here for sparse arrays (α < 0.1) can be contrasted
with those of Hill & Koch (2002) for flows in the moderate-Reynolds-number range,
but in a more dense periodic array (α = 0.2). Their results for the total variance,
which include temporal fluctuations and fluctuations within the primary wakes (not
included in our analysis) show that the variance increases with Reynolds number as
the flow becomes increasingly chaotic. The results further show the effect of close
cylinder spacing, made even more pronounced by the periodic nature of their array,
which leads to primary-wake interactions, as discussed in § 2.1. Such effects are not
present in our random array at lower density and may explain why we observe
different behaviour to Hill & Koch.

To characterize the decay of the wake velocity deficit, we measured the mean
correlation, r = 〈(u1 − Uo)(u2 − Uo)〉/σ 2

u′ , between two successive profiles, u1(y) and
u2(y), separated by distances of (79 − 118)d , or (1 − 4)/a depending on ad. The
three profiles shown in figure 3(a) are typical of these separated profiles. For all ad ,
we found r < 0.10, consistent with the exponential decay of velocity fluctuations,
1/

√
x∗ exp(−CDadx∗), from (35) which predicts r < 0.02 for these spacings and

densities.
Tracer experiments were conducted by injecting small pulses of Rhodamine WT

dye into the flume at mid-depth and mid-width at a distance 0.63 m (≈ 100d) into
the array, and this position is denoted X = 0. Based on results for the longitudinal
decay in correlation between cross-sectional velocity profiles just discussed, it was
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Figure 4. Histograms of spatial velocity measurements for Re ≈ 650 and (a) ad = 0.013,
(b) 0.025, and (c) 0.082. Data are taken from two lateral velocity profiles for each case. The
standard deviation, σ ∗

u = σu/Uo, is shown in the plots.
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Figure 5. Relationship between spatial velocity variance, σ ∗2
u = σ 2

u /U 2
o , and ad for

Re ≈ 650 (circles) and Re ≈ 65 (squares). Theory, (51a) and (53), predicts the relationship

σ ∗2
u = (1/16)

√
CDRet

√
ad − (1/4

√
2π)C2

D

√
Ret x∗

oad , i.e. second order in
√

ad . Least-squares
second-order polynomial fits were performed on the data for each Reynolds number with CD

and xo the adjustable parameters and using Ret = 35, obtained from data in Kovasznay (1949)
and Zavistoski (1994). The best fits, shown by the dotted line (Re ≈ 650) and the broken
line (Re ≈ 65) yielded for Re ≈ 650 values of CD = 0.85 and x∗

o = 0.58, both well within
the expected range. For Re ≈ 65, the second-order fit yielded a positive coefficient for the
second term, which is unphysical, so a linear fit was performed to yield CD = 1.1, also quite
reasonable. The decrease in drag coefficient with increasing Reynolds number, as suggested by
the fits, is consistent with the drag dependence for an isolated cylinder (Schlichting 1987). The
consistent increase in σ ∗2

u with ad and the reduction for higher Re are both consistent with
theory as given by (51a).
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Figure 6. Dependence on Re of the standard deviation, σ ∗
u = σu/Uo, of the velocity field

for ad = 0.082. Uncertainties due to the finite number of measurements (samples of the
underlying velocity distribution) are shown by vertical bars. σu is inversely related to Re,
consistent with the well-established CD − Re relationship for an isolated cylinder in this Re

range. This supports the theoretical relationship σ 2
u �

√
C3

D predicted by (51a).

concluded that the flow at X = 0 was representative of flow conditions throughout
the array, showing no signature from the flow upstream of the array. Time records
of dye concentration were measured using a Chelsea Instruments Aquatracka III
fluorometer (sampling rate 7.5 Hz) placed at a fixed downstream location which
ranged from X = 0.5 m to X = 3.5 m over separate tracer releases. At least 10
realizations were performed for each experimental scenario. Concentration records
were normalized according to

C∗(t) =
C(t)∫ ∞

−∞
C(t) dt

, (69)

where C∗(t) is the density function for tracer passage time. This normalization removes
variations in C(t) across realizations caused by small differences in the mass of dye
released and also eliminates the effects of transverse and vertical diffusion and drifting
of the tracer cloud. At each longitudinal position X and for each realization, denoted
by i, the mean arrival time, mean velocity, and temporal variance of the tracer cloud
are given by

ti =

∫ ∞

−∞
tC∗

i (t) dt, (70)
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Figure 7. Growth of tracer variance with time for Re ≈ 600 and (a) ad = 0.013, (b) 0.025
and (c) 0.082. The normalized spatial variance, σ ∗2

x = σ 2
x,i/d

2, for each individual realization,

is plotted on the y-axis, while the normalized time, ti
∗ = ti(Ui/d) is plotted on the x-axis. For

a Fickian process, the variance grows linearly with time. The effective dispersion constant is
given by the linear best fit, i.e. D/Uod = 1

2
(dσ ∗2

x /dt∗).

Ui =
X

ti

, (71)

σ 2
t,i =

∫ ∞

−∞
t2C∗

i (t), (72)

from which the ensemble averages 〈t〉, 〈U〉 and 〈σ 2
t 〉 can be computed. The spatial

variance is calculated by the kinematic relationship, σ 2
x,i = U 2σ 2

t,i . This conversion is
valid for large Péclet number based on longitudinal dispersion, P > 100 (Levenspiel
& Smith 1956), which is satisfied in these experiments.

For Fickian diffusion, tracer variance grows linearly in time with the dispersion
constant determined from the slope D = 1

2
(dσ 2

x /dt). Introducing the non-dimensional
variance and time

σ ∗2
x,i = σ 2

x,i

/
d2, (73)

t∗ = tUi/d, (74)

the non-dimensional dispersion constant is

D∗ =
D

Uod
=

1

2

dσ ∗2
x

dt∗ . (75)

Results for all Re–ad scenarios show linear growth of variance with time, with
correlation coefficients, r2, typically well above 0.9, indicating a highly significant
correlation (Taylor 1997). Typical plots are shown in figure 7.

That the tracer variance grows linearly with time (figure 7) suggests that the
second moment of the tracer distribution evolves by Fickian dispersion. We can
confirm whether the experimental array is indeed long enough for the processes
expected to be contributing to dispersion to have reached the Fickian limit. From
(68), multiplying by the mean velocity to convert the time scale to a distance, the
asymptotic distance necessary for secondary-wake dispersion to become Fickian is
much greater than O(d/

√
ad) or much greater than ≈ 2 cm and ≈ 6 cm, for the density

scenarios ad = 0.082 and ad = 0.013, respectively. Thus, the observation of Fickian
dispersion within the 350 cm experimental array is consistent with the prediction.
Moreover, from (21), neglecting scale constants and converting the time scale to
a distance, the vortex-trapping theory, (21), predicts that the tracer must advect
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Figure 8. Dependence of total dispersion, D∗ = D/Uod , on Re for ad = 0.013 (*), ad = 0.025
(circles), ad = 0.082 (squares). Vertical bars give uncertainty in D∗ obtained from linear
regression analysis of σ ∗2

x vs. t∗ data. The inverse relationship between Re and D∗ observed
for all ad scenarios is consistent with the dependence of both Ds and Dv on the changing
wake structure. The primary wake size and residence time, as well as the drag coefficient, all
decrease with increasing Re. For all Re, D∗ is comparable at ad = 0.013 and ad = 0.025, but
increases sharply at ad = 0.082. This suggests that at the lower ad secondary-wake dispersion
dominates, but is surpassed by vortex-trapping dispersion at the highest ad .

a distance at least O(1/a) before the distribution is Gaussian. This corresponds
to distances in the range O(10) and O(100) cm for the density scenarios ad =
0.082 and ad = 0.013, respectively. Thus, the observation of Fickian dispersion
within the experimental array is also consistent with the vortex-trapping prediction.
However, from (29), the length scale for boundary-layer dispersion to be significant
is O((cf Re)−1/3Pe2/3/a). For our experiments, Pe =O(105), Re = O(100), cf ≈ 5.93/√

Re, and thus the asymptotic time scale must be at least ≈ 5000 cm and ≈ 30 000 cm
for the density scenarios ad = 0.082 and ad = 0.013, respectively, which is much
longer than the 350 cm experimental array. Thus, we do not think that boundary-layer
dispersion due to the cylinder surfaces played any role in the dispersion of the tracer
cloud in the experiments.

In figure 8, the measured dispersion constants are plotted as a function of Re
for each ad scenario. There are two clear trends: (i) for all ad , D∗ decreases with
increasing Reynolds number, and (ii) for all Re, D∗ increases sharply for the highest
ad after changing very little between the low and middle ad . The first dependence,
D∗ = f (Re), is consistent with changes in both the primary and secondary wake
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structure with Reynolds number. The drop in D∗ is most dramatic between Re = 65
and 200, and corresponds well to similar changes in the size of the vortex-formation
zone (primary wake) across this range observed by Gerrard (1978). Gerrard also
observed that near Re = 100, the residence time of the primary wake drops sharply
(Gerrard 1978) as convection of vorticity begins to dominate diffusion. According to
the therory developed in § 3, this decrease in the size of the primary wake and its
residence time would contribute to a decrease in trapping dispersion with increasing
Re, consistent with theory. Furthermore, it is well-established that the drag coefficient
drops by a factor of nearly two between Re = 65 and 200. With this drop in CD ,
(51a) predicts a decline in σ 2

u , which is supported by the observations in figures 5 and
6, and thus a decline in secondary-wake dispersion, as given by (64).

The dependence of D∗ on ad observed in figure 8 is also consistent with
theory. Recall that vortex-trapping dispersion increases in proportion to ad , whereas
secondary-wake dispersion is only weakly dependent on ad . That D∗ does not increase
between ad = 0.013 and 0.025 suggests that secondary-wake dispersion dominates
the total dispersion in this range. However, when ad increases to 0.082, D∗ increases
sharply, suggesting that between ad = 0.025 and 0.082, the contribution of trapping
dispersion surpasses that of secondary-wake dispersion and begins to control the
dependence of D∗ = f (ad).

5.1. Cylinder-scale mixing

The theory and results presented thus far have been obtained by averaging over an
area much larger than the cylinder spacing, and thus do not describe mixing on
smaller scales. Now we consider the transport at scales smaller than s, particularly
to highlight a transition in behaviour occurring near Re ≈ 200. Figure 9 depicts
concentration time series, C∗(t), measured at different Reynolds numbers. Significant
fluctuations in the time series are evident for Re = 65 (figure 9a), but are absent from
the profiles at Re = 650 (figure 9b). The strength of the fluctuations are characterized
by C∗

rms = 〈C∗
i (t) − C∗(t)〉/(max C∗(t)) where the overbar denotes an average over all

realizations for each time and the angle brackets an average over the time series. A
dramatic decrease in fluctuation strength occurs between Re = 65 and Re = 650, with
C∗

rms dropping from 0.07 to 0.01.
Insight into these fluctuations can be gained from the spectral density plots of

both concentration and transverse velocity, as shown in figure 10. Peaks in the
velocity spectra corresponding to vortex-shedding frequencies, with Strouhal numbers
of St = f d/Uo ≈ 0.16, are evident in both the Re = 650 (10a) and Re = 65 (10b)
scenarios. The peaks in the concentration spectra, however, occur at frequencies
lower than those of vortex shedding. For Re = 650, the peak frequency corresponds
to the time scale of the full tracer cloud form advecting past the measurement
point. The absence of higher frequencies, i.e. small-scale heterogeneity, is consistent
with the smoothly varying tracer distribution apparent in figure 9(b). For low Re,
however, a spectral peak occurs between 0.07 Hz � f � 0.1 Hz. This frequency peak
corresponds to the convection of spatial heterogeneity of length scale l � Uo/f � 20d

for ad = 0.013, i.e. it is of the same order as the cylinder spacing, s ≈ 9d . That the
length scale for spatial fluctuations is the spacing scale, s, suggests the following.
The fluctuations in concentration represent the passage of distinct unmixed tracer
filaments. The filaments are stretched and folded through interaction with individual
cylinders and their local velocity gradients, such that the distortions have a length scale
comparable to the cylinder spacing. Distinct tracer filaments persist at low Reynolds
number because the free-stream diffusion is weak. For higher Reynolds number,
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Figure 9. Degree of mixing with Reynolds number. Profiles for (a) Re = 65 and (b) 650
and ad = 0.013 (approximately 10 realizations for each case). Profiles have been rescaled by
t∗ = (t − ti)/σt,i and C∗ = C∗

i σt,i . Fluctuations are quantified by Crms , the root mean square
of the deviations from the ensemble mean; C∗

rms = Crms/Cpeak . The low Re profile (a) exhibits
significant fluctuations that are absent in the high Re profile (b).

free-stream turbulence generated by the element wakes is sufficient to erase the
filament signature and smooth the concentration profiles. The onset of enhanced small-
scale mixing occurs when the shedding vortices associated with each element become
turbulent. This transition occurs near Re = 200 for an isolated cylinder (Kundu
1990). Consistent with this transition to turbulence, Nepf, Sullivan & Zavistoski
(1997) observed a dramatic increase in transverse diffusion, a proxy for turbulent
diffusion, between Re = 110 and Re = 190 in a model array identical to that used
here. Hill & Koch (2002) observed that in an unbounded periodic array with α = 0.2,
a transition occurs near Re ≈ 200 (using our definition of Re), below which the
velocity field is periodic in time, and above which it becomes chaotic. Presumably,
this would correspond to the mixing transition, and it occurs in the Reynolds number
range consistent with our observations and the others cited here. It is interesting
to note that Hill & Koch found the transition to be shifted to a smaller Reynolds
number (≈ 80) for a wall-bounded array. Our observations are more in line with
the transition expected for an isolated cylinder, and that observed by Hill & Koch
in the unbounded array, suggesting that the wall effects were not significant in our
random, more sparse array. Also interesting is the fact that we observe very little
dependence of the Strouhal number with cylinder density or Reynolds number, as
all measurements were between St = 0.16 and St = 0.2 between 65 < Re < 650
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Figure 10. Power spectral density plots for temporal fluctuations in both concentration (solid
lines) and transverse velocity component (dotted lines) at ad = 0.013. PSD are normalized
such that they are proper density functions, i.e. the integral over frequency space is unity.
(a) Re = 650 corresponds to the concentration profiles in figure 9(b); (b) Re = 65 corresponds
to figure 9(a). Distinct peaks in the velocity spectra – f ≈ 2.5 for Re = 650; f ≈ 0.25 for
Re = 65 – correspond to vortex shedding, with Strouhal number of St ≈ 0.16 in each case. The
peaks in the concentration spectra are shifted to lower frequency relative to vortex shedding.
For low Re, (b), fluctuations are due to convection of spatial disturbances, and the dominant
concentration frequencies – f ≈ 0.1 – correspond to length scales, l = Uo/f , around 20d ,

which is of the order of the cylinder spacing, s = d/
√

ad ≈ 9d . For high Re, (a), the dominant
frequencies correspond to the length scales of the mean tracer distribution, i.e. the cloud is
nearly homogeneous on the sub-cloud scale. Finally, note that for both cases, the sampling
frequency of the fluorometer can resolve concentration fluctuations covering the full range of
the dominant velocity fluctuations.

and 0.013 < ad < 0.082, similar to the values for an isolated cylinder (Schlichting
1987). This shows that vortex-shedding dynamics and transition to turbulence for
sparse random arrays are less affected by wall effects and cylinder interactions than
dense periodic arrays, and, to leading order, indeed behave as a collection of isolated
cylinders, as we have assumed.

The profiles in figure 9 allow us to estimate the magnitude of turbulent diffusion.
In figure 9(c), the spacing-scale fluctuations are absent, implying that the time scale
for mixing over the spacing scale is faster than advection to the measurement point.
The time scale for diffusion over s is of order s2/Dt and for advection is X/Uo. Then
O(s2/Dt ) < X/Uo, and so we have that Dt/Uod � O(0.1). Conversely, in figure 9(a)
the spacing scale fluctuations persist, so it follows that Dt/Uod � 0.1. These estimates
are in agreement with results from Nepf et al. (1997), who found for a comparable
cylinder density, Dy/Uod = 0.17 for Re = 588, and Dy/Uod = 0.02 − 0.06 for
Re = 90 − 100.

Based on the previous discussion, it must be noted that when considering only
array-scale dispersion, a description of the transport on small scales is elusive. This
is an important issue in applications for which local variations in the scalar field
are significant, for example, in mass transfer between aquatic plants and the water
column, or heat transfer between rods and the surrounding fluid. Many biological
processes respond nonlinearly to local concentration, and will be strongly affected by
the fluctuations evident in figure 9.
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D∗ Dp/Uod Dg/Uod
D∗ = (interpolated Difference (potential (gap con-

ad σ ∗2
w D∗

s D∗
v D∗

s + D∗
v experimental) (%) flow theory) tribution)

Re ≈ 100
κ ≈ 1.14, 0.013 0.083 1.09 0.28 1.37 1.2 +14 0.01 0.01

β ≈ 3
St ≈ 0.16 0.025 0.105 1.03 0.53 1.56 1.2 +30 0.01 0.01
CD ≈ 1.8 0.082 0.141 0.85 1.75 2.60 2.4 +8 0.05 0.04
Ret ≈ 35,

xo ≈ 0.6

Re ≈ 190
κ ≈ 0.86, 0.013 0.064 0.84 0.09 0.93 0.8 +16 0.01 0.00

β ≈ 1.5
St ≈ 0.18 0.025 0.082 0.80 0.18 0.98 0.9 +9 0.01 0.01
CD ≈ 1.5 0.082 0.114 0.67 0.59 1.26 1.7 −26 0.05 0.03
Ret ≈ 35,

xo ≈ 0.6

Table 1. Comparison of theory with experiment for Reynolds numbers 100 and 190. For
each case, σ ∗2

w and D∗
s = Ds/Uod are predicted from (51a) and (65) using the Re-dependent

constants CD and St for an isolated cylinder (Schlichting 1987 figures 1.4 and 2.9); Ret

was fitted from experimental wake profiles at Re= 56 (Kovasznay 1949) and Re = 190,770
(Zavistoski 1994), which gave Ret ≈ 35; x∗

o = 0.6 is based on the experimental fit shown in
figure 5. D∗

v = Dv/Uod is predicted from (19) with the parameters κ and β , taken from Duan &
Wiggins (1997). The theoretical prediction for the total dispersion constant, D∗ = D∗

s +D∗
v , is an

independent estimate, made without any parameter adjustment. However, since experimental
data were not available for the Reynolds numbers analysed by Duan & Wiggings, Re = 100
and 190, the experimental values for D were obtained by interpolating the data shown figure 8.
The last two columns show the contributions to total dipersion made by, respectively, the
potential flow prediction from Eames & Bush (1999), (A 1), and the cylinder gap flow, (66).
Both are negeligible compared with D∗

vand D∗
s across all scenarios

6. Comparison with theory
To evaluate further the theory for vortex trapping and secondary-wake dispersion,

the predictions for total dispersion based on the theory are directly compared with
experimental observations. First, xo, and Ret are required to estimate secondary-wake
dispersion Ds . The drag coefficient CD can be estimated based on an isolated cylinder
(Schlichting 1987 figure 1.4). Alternatively, reasonable estimates of CD and xo can be
made from figure 5 (see caption). We take Ret = 35, from wake profiles at Reynolds
numbers of 56, 190 and 770 taken from data in Kovasznay (1949) and Zavistoski
(1994). The effective Schmidt number, Sct , is taken to be unity, a good approximation
for large Reynolds number (Hinze 1975).

Secondly, to estimate vortex-trapping dispersion, Dv , the parameters describing the
size of the wake-trapping zone, κ , and the residence time, β , are necessary. These are
non-trivial functions of Reynolds number. Some results are available from Duan &
Wiggins (1997), who used lobe dynamics to compute the size and residence time of
the primary wake cavity for Re = 100 and Re = 190. From their results, κ and β

can be estimated. The mean residence time is estimated as the time for the fraction
1/e of particles initially residing within the wake to be removed. These parameter
values along with others leading to the theoretical predictions of Ds and Dv are
shown in table 1. Because experimental data were not available for the Reynolds
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Figure 11. Comparison of theory and experiment for (a) Re = 100 and (b) 190. Theoretical
predictions are made for secondary wake dispersion, D∗

s = Ds/Uod , and vortex trapping
dispersion, D∗

v = Dv/Uod , using parameters described in table 1. No parameter adjustment
was used to fit the data set, such that the theoretical predictions are independent estimates.
In good agreement with the data, the theory suggests that the dependence D = f (ad) is weak
for low ad owing to the dominance of Ds in this range. As ad is increased, Dv surpasses Ds ,
hence the sharp increase in D observed for the high ad case.

numbers studied by Duan & Wiggins, the experimental values given in table 1 were
interpolated from available observations at Re = 90, 140 and 600 (shown in figure 8).

Included in table 1 is the contribution to dispersion predicted by the potential flow
theory of Eames & Bush (1999). For solid impermeable cylinders, the theory predicts
a dispersive component, which we denote Dp , of magnitude

Dp = 0.74αUod. (76)

As shown in table 1, Dp is negligible compared to vortex trapping and secondary-
wake dispersion, indicating that for Re ≈ 10–1000 the cylinder wakes are much more
important to longitudinal dispersion than the effect of streamline curvature around
cylinders described by the potential flow theory. Table 1 also shows that the dispersive
component from the gap flow, (65), is likewise negligibly small compared with vortex
trapping and secondary-wake dispersion.

In addition to results in table 1, a graphical comparison of theory and experiment
for Re = 100 and Re = 190 is shown in figure 11. First, consider Re = 100.
The agreement is satisfactory and shows that the theory captures the weak ad-
dependence for low ad and the sharp increase for high ad . As theory suggests, for low
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ad , secondary-wake dispersion makes the primary contribution to total dispersion
(Ds > Dv in table 1 for Re = 100, ad = 0.013). However, vortex trapping becomes
dominant as ad is increased (Dv > Ds in table 1 for Re = 100, ad = 0.082). Note
that for Re = 100, we expect little or no contribution from turbulent mixing to total
dispersion, in accordance with the results shown in figure 9, from which we estimated
Dt/Uod < 0.1 for Reynolds numbers in the range 65–140, ad = 0.013. For this ad ,
the sum (Ds + Dv)/Uod = 1.38, clearly much greater than the turbulent contribution.

For Re = 190, the comparison between theory and experiment is also satisfactory,
with the ad-dependence captured by the theory. However, the theory underpredicts
the experimental observation at high ad . This may be attributed to the proximity
of this Reynolds number to the turbulence transition. The increased mixing over
small scales observed above Re = 140 in figure 9 and the observation of a critical
increase in turbulent mixing in the range near Re = 190 by Nepf et al. (1997) would
support a contribution from turbulent diffusion at this Reynolds number. Moreover,
the estimate of the turbulent diffusivity based on figure 9 and given in the previous
section is O(0.1). This magnitude could account for the 0.35 underprediction shown
in table 1 and figure 11(b) for ad = 0.082.

7. Conclusions
We have presented a theoretical framework for predicting longitudinal dispersion

in an array of randomly distributed cylinders at moderate Reynolds numbers
characterized by unsteady cylinder wakes. We find that two processes predominantly
contribute to the dispersion in this regime: trapping of tracer in the primary wakes
and the advection of tracer through the spatially random velocity field created by
cylinder secondary wakes. The vortex-trapping dispersion increases with the cylinder
density, and is inversely dependent on Reynolds number, which dictates the features of
the primary wake. Secondary-wake dispersion arises from the perturbation in mean
velocity created by each cylinder. When superimposed, the randomly distributed
perturbations create a randomly heterogeneous time-averaged velocity field. The
variance of this velocity field is directly related to the array density. However, because
the correlation length scale of the velocity field is inversely related to the array density,
the effects cancel, and as such, secondary-wake dispersion is only weakly dependent on
cylinder density. Qualitatively, this separates secondary-wake dispersion from vortex-
trapping dispersion, since the latter increases with density, while the former remains
approximately constant.

The two types of dispersion described here should be intrinsic to flow through
any array of distributed bodies at moderate to high Reynolds number, and extension
of the theory for these two mechanisms to more complex morphology should be
straightforward. That is, for sufficiently high Reynolds number and sufficiently far
downstream of the body, the velocity defect becomes insensitive to the particular
body morphology, and it is dictated primarily by the form drag. Thus, given the
drag for a body, the associated velocity defect can be found, and used in (64) to
predict dispersion due to the random velocity field. Further, one can predict the
trapping dispersion given the residence time and size of the trapping region around
any arbitrarily shaped body. That the framework presented in this paper can apply to
general arrays of bodies is advantageous for describing dispersion in natural systems
such as wetlands, since plant morphology may vary considerably.

The results we obtain are valid for relatively small ad (� 0.1). For higher density,
vortex-trapping dispersion is expected to be the dominant contributor to total
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dispersion, with trapping zones growing larger, and encompassing multiple cylinders.
However, given the residence time parameters for these multi-body trapping zones,
dispersion may be predicted by the theory presented here even for ad > 0.1.

Our experimental observations indicate that a mixing transition occurs near Re ≈
200. For smaller Reynolds numbers, the concentration field exhibits significant spatial
heterogeneity, with distinct filaments of tracer created by the bending and stretching of
tracer around the cylinders. Above Re ≈ 200, the cylinder wakes contributes sufficient
small-scale turbulence to erase the filament signatures and the tracer cloud appears
smooth. Thus, while we have shown that turbulent diffusion does not contribute
significantly to longitudinal dispersion, it is important to the local character of the
tracer concentration field, which may be important to local mass and heat transfer
processes.

Finally, it is pertinent to address the lack of experimental or numerical studies
of Lagrangian transport in the oscillating primary wake behind circular cylinders.
Nearly all research on primary wakes has been devoted to Eulerian mixing properties,
e.g. turbulent fluctuations, and so the primary wake parameters such as the size
and residence time, which are necessary to calculate vortex-trapping dispersion, are
lacking. The dearth of literature on this subject is curious, given the general interest in
Lagrangian mixing. With the exception of the work by MacLennan & Vincent (1982),
the only such studies, to our knowledge, of Lagrangian transport in cylinder wakes
have come from dynamical systems applications (Ziemniak, Jung & Tell 1994; Duan
& Wiggins 1997; Shariff, Pulliam & Ottino 1991). In addition to being important to
the prediction of dispersion in cylinder arrays, observations of Lagrangian transport
in cylinder wakes is of fundamental interest, and we stress the need for more such
studies.

Appendix. Exact expression for dispersion due to the secondary wake velocity
disturbance

The dispersion constant due to 〈u′c′〉, the spatially heterogeneous velocity field, is
determined as follows. Assuming, subject to confirmation, that the average flux due
to spatial correlations behaves as a Fickian dispersive flux, i.e. is proportional to the
mean concentration gradient, then we can write

−Ds∇Co = 〈u′c′〉 ≡ lim
t→∞

lim
y→∞

1

t

∫ t

0

dt

∫ x

−∞
P (x1)u

′(x|x1, t)c
′(x|x1, t) dx1. (A 1)

The integral expression is simply the average over all spatial correlations, u′c′(x, t),
due to fluctuations in the mean velocity and concentration fields caused by a cylinder
held fixed at x = x1. Here, the probability of finding a cylinder at x1 is the two-
dimensional probability density function P (x1) = a/d . The concentration fluctuation,
c′(x|x1, t) can be expressed as

c′(x|x1, t) =

∫ x(t)

x1+lr

Uo∇Co − u(x ′(t − τ )|x1)∇Co dx ′

u(x ′(t − τ )|x1)
= ∇Co

∫ x(t)

x1+lr

−u′(x ′(t − τ )|x1) dx ′

u(x ′(t − τ )|x1)
,

(A 2)

dx ′(t − τ )/dτ = −u(x ′|x1, t − τ ), x ′(t) = x(t), (A 3)

Specifically, c′(x, t) is due to the difference between the mean advective flux,
Uo∇Co, which is oriented in the streamwise direction, and the local advective flux,
u(x ′|x1, t)∇Co integrated over the path of a Lagrangian fluid parcel between x1 and
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x. Note that while the velocity disturbance is a function of the two-dimensional
coordinate, x ′, u is the streamwise component of the velocity disturbance, and the
integration is over only the streamwise coordinate, x. Since we separate the flux
due to the velocity disturbance in the secondary wake from the vortex trapping flux
in the primary wake, integration is only performed between x and x1 + lr , the end
of the recirculation zone (see figure 1). Moreover, the position variable, x ′(t − τ ),
and thereby the local velocity, u(x ′|x1, t − τ ), is enslaved to the time variable by
the kinematic initial value problem (A 3). As a result, the time-dependent velocity
disturbance, u(x|x1, t), must be known to exactly calculate (A 2), and thus the problem
is intractable unless approximations can be made, as in § 4. Combining (A 1) and (A 2)
gives

Ds = lim
t→∞

lim
y→∞

1

t

a

d

∫ t

0

dt

∫ x

−∞
dx1u

′(x|x1, t)

∫ x(t)

x1 + lr

u′(x ′(t − τ )|x1) dx ′

u(x ′(t − τ )|x1)
, (A 4)

which must be solved with the aid of (A 3).
Provided the velocity disturbance, u′, vanishes sufficiently fast for long distances

away from the fixed cylinder at x1, the integral in (A 4) will be independent of x,
signifying that dispersion is non-local, and thus a finite constant value for Ds results.
As shown in § 4.1, the decay of the velocity disturbance, u′, is ensured by the resistance
due to the remaining cylinders in the array, and there is an effective attenuation length,
(aCD)−1, much like the Brinkman screening length in a viscous porous medium
(Koch & Brady 1985), which ensures the existence of Ds .
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